
WebSeer: An Image Search Engine for the
World Wide Web1

Charles Frankel, Michael J. Swain, and Vassilis Athitsos

The University of Chicago
Computer Science Department

1100 East 58th Street
Chicago, Illinois 60637

Technical Report 96-14

August 1, 1996

Abstract

Because of the size of the World Wide Web and its inherent lack of structure, finding what one is
looking for can be a challenge. PC-Meter’s March, 1996, survey found that three of the five most
visited Web sites were search engines. However, while Web pages typically contain both text
and images, all the currently available search engines only index text. This paper describes
WebSeer, a system for locating images on the Web. WebSeer uses image content in addition to
associated text to index images, presenting the user with a selection that potentially fits her
needs.

1This work was supported in part by ONR contract N00014-93-1-0332 and NSF Grant No. IRI-9210763-

A01.

2

Introduction

The explosive growth of the World Wide Web has proven to be a double-edged sword. While an
immense amount of material is now easily accessible on the Web, locating specific information
remains a difficult task. An inexperienced user may find it next to impossible to find the
information she wants; even an experienced user may miss relevant Web pages. Users
searching the World Wide Web have a number of options presently available to them. Lycos,
Excite, Alta Vista, and Yahoo! are but a few examples of useful search engines. All of these
systems have been designed primarily to find text-based information on the Web. WebSeer is
designed to find the other major source of information currently available on the Web: images.

In order to find specific images, a method of discovering and indexing their contents must first
be developed. The pixels alone are insufficient; some additional information is needed to make
it possible to search for specific images. Discovering image content has proven to be an
extremely difficult problem. One approach has been to supplement the image content with other
types of information associated with the image. Ogle and Stonebraker’s Cypress system [1][2]
uses information contained in hand-keyed database fields to supplement image content
information. Srihari’s Piction system [3] uses the captions of newspaper photographs containing
human faces to help locate the faces. IBM’s QBIC system [4] relies on the user specifying
specific visual cues or providing an example image (e.g. a sketch) to begin a query for an image.
In Picard and Minka’s Foureyes system [5][6] close interaction with a human user supplements
information derived from the image content.

WebSeer uses the textual information surrounding an image and the image header to supplement
the information derived from analyzing the image content. This additional information is used to
create a context in which image analysis algorithms can effectively operate. Image analysis
algorithms are then used to classify the image within a taxonomy of types (drawing, photograph,
portrait, etc.) and to extract useful semantic information.

Like text search engines, WebSeer does not have to access the original data to respond to a
query; all analysis of the image and surrounding text is done off-line during the creation of the
database. In this way, WebSeer will be able to give fast query responses to a possibly huge
number of users.

The first part of this report describes the types of information that an image search engine such
as WebSeer could extract from the Web and how they could be stored in a database. The second
part illustrates a number of example queries and how images could be found that fit the queries.
The final part details the prototype WebSeer program and the algorithms that have been
implemented to date.

How to Find Images on the Web

3

Information for finding images on the World Wide Web can come from two sources: the
relevant text and the image itself. Using information from both sources, a program
should be able to successfully retrieve requested images.

Cues from the Text and HTML Source Code

An HTML document is a structured document. Understanding the structure of a particular
document can reveal valuable information about the images contained on that page. There are
several places relevant information about image content may be located within the document.
These are ordered by the likelihood of the text being useful in an image search.

1. Image File Names: File names contain important clues as to the content of the file. In many
cases the full URL of an image (e.g. “http://www2.int-evry.fr/~hug/images/marilyn/mm-
trans.gif”) contains more information than a relative URL (e.g. “mm-trans.gif”), which may
be included in the HTML source. We have found the file name and the name of the top-level
directory containing the file are most useful for indexing the content of the image. A caveat
is that filenames may be difficult to decipher because of abbreviations used for brevity or out
of necessity (e.g. in the FAT file system used in DOS/Windows 3.1).

2. Image Captions: Often, images have captions that describe the picture. Although HTML
does not have an explicit caption tag, captions are often signaled as text that is located within
the same center tag as the image
(http://www.lib.uchicago.edu/~mozart/Marilyn/monthly.html), within the same cell of a
table as an image (http://studentweb.tulane.edu/~llovejo/marilyn/), or within the same
paragraph (see Appendix A).

3. ALT= Text: Image fields in HTML documents may contain a special ALT= section for
alternate text which is displayed in the event that the images can not be loaded. This
alternate text may briefly describe the content of the image. For instance, the alternate text
for the a photograph of a person may contain simply the name of the person in the
photograph. The alternate text may also give hints as to the intended “goal” of the image.
For instance, an image containing an ad for Coca-Cola may have the alternate text “Buy
Coca-Cola.”

4. HTML Titles: The HTML title of the document (which is displayed above the viewed page
by the browser, is used for history lists, and so on) often provides information about the
content of the images contained within the document. For example, the page
http://tomahawk.cf.ac.uk/~scotw/marilyn/page2/page2.html is entitled “Marilyn Monroe
Images - The ventilator scene”, which is highly descriptive of the contents, and more
descriptive than any other cues that can be found on the page (see Appendix A).

5. HyperLinks: The text of a hyperlink usually gives clues about what the link refers to. In
many cases, images are referenced by hyperlinks rather than being imbedded within the text
of the page. An example of such a link is “Marilyn JPG #21 (Jumping for joy)”, at

4

http://www.netins.net/showcase/agency/marilyn.html. The same photo is referenced as
“Marilyn jumping for joy” at
http://www.rtmol.stt.it/rtmol/onsite/stars/marilyn/m_imag~1.html, where only the italicized
text is the text of the hyperlink. In many cases, text hyperlinks assume the reader
understands that the pictures are of Monroe and does not give any information about who is
in the picture. These links say “Simply gorgeous”, “Leaning on a banister”, and so on.
Consequently, other text in the same sentence or phrase with the hyperlink can also be
relevant to deciphering the image content.

6. Other text: In addition to those types mentioned above, other text can give cues about the
images contained on the page. This text could be used to index the images on the page, with
a lower likelihood of reference than the text categories listed above.

Cues from the Image Content

Although it is clear that the context provided by the surrounding text can produce an effective
image search engine, examining the images themselves can substantially enrich the search. In
this section we will summarize some of the relevant information that can be derived directly
from the image content.

The following attributes can be easily obtained from the image header.

• Grayscale vs. color: Some may wish to search for only color images. While color images
can be converted to grayscale, those in search of black-and-white photography will want the
real thing.

• Image Size: This is usually useful for those who wish to screen out images smaller than a
certain size.

• File Type (JPEG, GIF, GIF89, etc.): Some searchers may wish to avoid the compromises in
quality introduced by constraints of these formats, especially the limited color palette in the
GIF format. GIF89s are animations, and so will often be of separate interest than the other
static image formats.

• File Size: For those with slow connections or limited RAM or hard drive space, overly large
files may be of less interest

• File Date (when present): If someone is looking for newer images, the date can be used to
screen out images that are certainly older than a certain date.

Obtaining information beyond that listed above generally requires some image analysis. The
most useful sorts of image analysis can be grouped into three overlapping categories: 1.
classifying the image into one of several types (e.g. photograph, hand-drawing, computer-
generated drawing), 2. recognizing image structures (e.g. faces, horizons), and 3. distinguishing
specific regions primarily by color/texture attributes (e.g. skin, sky, foliage).

5

Classifying Images

Creating a taxonomy of image types can facilitate separating images the user is interested in
from those that she is not. However, the most important aspect of classification is creating the
categories. The authors of an image search engine must either design a system that uses helpful
categories, or include a mechanism to allow the user to guide her own search using relevant
schema. Ideally, a system would use aspects of both types of categorization.

One important classification which can be made is between images that are photographs and
hand-drawn and computer-created drawings. In many cases users may wish to find only
photographs of faces, and ignore the many other images that match the search string. Some of
these non-photographs may be weeded out because they are too small (e.g. buttons, dividers,
arrows). Others, such as image-maps containing text, advertisements, or drawings, must be
eliminated on other criteria. Of course, more realistic drawings will be likely to be mistakenly
categorized as photographs. Likewise photographs can be thresholded and manipulated in other
ways to make them look more like drawings. Nonetheless, we have found that many images can
be successfully classified as either drawings or photographs. It may also be possible to separate
computer-generated drawings (i.e. those that are artificial-looking, with precisely straight lines
and precise color gradients) from hand drawings.

There are many other potentially useful categories. Images can be classified as portraits, which
can be further classified by the number of people in the image and the amount of the body shown
along with the face (close-up, head-and-shoulders, upper-body, etc.). Images can also be
classified as indoor or out, and outdoor images can be classified as landscapes.

Some of these categorizations may be best determined by analyzing global statistics, or the
statistics of relatively large portions of the image (e.g. photo vs. drawing). Others require other
sorts of analysis, which are described below.

Recognizing Image Structures

There are many types of objects to identify in images, which would aid content-based indexing.
We have identified two “objects” that are both important to the typical WebSeer user and within
the capabilities of existing computer vision technology. They are:

1. Faces: Face-finding algorithms have recently become fairly successful at finding faces in
grayscale photographs [7][8]. Faces in photographs are often seen upright, with the subject
looking at the camera; the easiest situation for face-finding algorithms. The high quality of
many photographs found on the Web, in many cases produced by professionals with careful
control of the lighting and high quality film and optics, improves the reliability of face
detectors. Combining face detection with color information from skin detection should
make a reliable face detector. A primary role of a face detector is to distinguish images of
people from other types of images that may show up on the same page. However, face
detection can do more. Users may wish to find a portrait of a single person, a group photo,
or pictures of a “crowd” containing many faces. Portraits can be close-ups, head-and-
shoulders shots, upper-body, or full-body shots; the size and location of the face can
differentiate among these choices.

6

2. Horizon: A number of systems search images for the presence of a horizon [9] (e.g. the
Cypress System). Detecting a horizon in a photograph tells us that the image has been taken
outdoors and allows us to roughly classify it as a landscape photograph.

Face recognition is another possible task one might think of assigning the system. For instance,
WebSeer could have a database of people that users are likely to search for, and identify their
faces when creating the index. Restricting possible matches to those people mentioned in the
text would greatly reduce the number of false positives the face recognizer would return. Further
research will likely define other categories of objects that could be searched for and indexed in
the same way as faces and horizons.

Recognizing Regions by Color/Texture Analysis

Some color and texture analysis may be useful for finding image regions containing skin, sky,
foliage, etc. in photographs. Skin may be used for finding faces and determining if images are
portraits; it is in itself of interest to some image searchers. Sky and foliage can also be used in
image classification. Other less common color textures, including sand, wood, etc., may also be
identified. If more classes such as these are created, it may prove useful to look for them only
when the context suggests they may be present.

The WebSeer Implementation
WebSeer was implemented with three guiding principles in mind:

First, WebSeer must have acceptable performance. We need to allow for extremely high
speed searches, as we expect a large number of people to be using our system simultaneously.
Since indexing occurs off-line, the performance of the indexing engine is less crucial than that of
the search engine. Nonetheless, indexing the entire web in a reasonable amount of time requires
the processing to proceed quite quickly. For example, assuming there are 10 million unique
images on the web, indexing them in two weeks would require eight images to be processed
every second. Crawler speed is also important. Preliminary results indicate that for every 100
HTML pages on the Web, there are 40 (unique) GIF images and one (unique) JPEG image. In
contrast to the file size of HTML pages, which averages around 6k, the average file size for GIF
files is 11k, and the average file size for JPEGs is 35k.

Second, we tried to incorporate standard commercial software and hardware whenever
possible. Much work has been put into developing advanced database engines, and WebSeer’s
ability to leverage technology adds significantly to its power. Microsoft’s Visual C++
development environment was used for much of this project. Microsoft’s Foundation Classes in
conjunction with the Standard Template Libraries (STL) provided many useful functions and
abstractions during the development of this project. On the hardware front, the use of relatively
inexpensive PCs allowed us to ramp up our storage and processing capacities quickly and within
reasonable cost.

Third, the project should provide a basis for experimentation. We foresee WebSeer
evolving in the following ways:

7

• better image understanding algorithms.

• advanced text indexing capabilities

• improved interactions between the image understanding and text indexing algorithms

• more complex transformations from form query submissions to search actions taken.

To facilitate this type of research, the project is divided in such a way that each component can
be worked on independently. Additionally, we wish to facilitate the incorporation of relevant
new technologies as they become available. The WebSeer project is composed of five major
executables. With the exception of the URL Server, which is written in Java, all executables are
written in C++ and run on a M.S. Windows NT 3.51 platform.

1) The WebSeer Crawler crawls the web downloading both HTML pages and images.
The crawler is multi-threaded so that the delay downloading pages is spread over
multiple threads. Each thread is connected to a database of previously visited (and
waiting to be visited) URLs using the ODBC 2.0 database protocol.

2) The URL Server is a multi-threaded java application which receives requests to
download URLs from the WebSeer Crawler. Separating the URL server from the
Crawler application allows us to download pages from multiple machines (with
different operating systems) simultaneously.

3) The WebSeer Indexer creates the index which is searched by the users. The indexer
parses the HTML code and executes the appropriate image understanding
applications.

4) The WebSeer CGI script is called when the user submits (POSTs) a query from the
WebSeer form. This script opens a TCP/IP connection to the WebSeer Search
Server, and formats the results for display to the user.

5) The WebSeer Search Server accepts requests from the WebSeer CGI script and
performs the appropriate searches based on the form fields which the user has filled
in.

The WebSeer Crawler largely obeys the Robot Exclusion Protocola. The Protocol is dependent
on system administrators including a robots.txt file on their web site, which lists areas of
the web site which robots should not visit. Most robots are designed to download only HTML
files, and so visiting a directory which includes images would be inappropriate. For this reason,
some robots.txt files exclude directories which contain only image files (See Appendix B).
Since the WebSeer Crawler is designed to download images, we obey the restrictions specified
by the robots.txt file when deciding whether to download an html file, but not when
downloading an image file.

a The Protocol is specified at http://info.webcrawler.com/mak/projects/robots/norobots.html

8

The WebSeer Indexer is perhaps the most interesting component to this system. The indexer
processes a single HTML file at a time. As each image is encountered in the HTML file (either
through an “” tag or an “<a href src=“this_image.gif”>” tag, the appropriate text is
extracted in the form of whole words. These words may be present in any of the ways described
above. Some of the words are more likely to contain information about the content of the image
they refer to. For this reason, we weight the words according to the likelihood that they contain
useful information. Words contained in the title of the HTML page, for example, have a lower
weight than those in the ALT tag of an image. When a user performs a search the summed
weights of the matching words are used as one criterion for sorting the resulting images. These
words and their weights are stored in a single database table. Part of an example WebSeer text
table is show below.

Image understanding algorithms are run whenever an image is encountered. The figure below

indicates the fields which WebSeer currently saves for each image.

Image ID Text Fragment Fragment Weight

31308 kathy 1

31308 ireland 1

31308 vivek 1

31309 tn 3

31309 ki 3

31309 vivek 1

31309 kathy 1

31309 ireland 1

31311 marilyn 3

31311 gallery 2

31311 lovejoy 1

31311 marilyn 1

31311 monroe 1

31311 collection 1

9

Three fields contain information about how the image was included in the HTML
document. The “Is Image a Photograph” field contains the results of the photograph/drawing
algorithm described below. “Is Image an Image Map” indicates whether the image appeared in
the HTML code with an ISMAP tag. These images appear to the user as clickable images.

“Is Image included as a Reference?” indicates whether the image appears as part of an HTML
document, or whether only a reference is included. If an image is part of an HTML document,
users viewing that document will immediately be able to see that image. If a reference is
included, the user may have to click on some part of the document in order to view the image.
References to images are common when the images are large and/or slow to download.

The “Number of Faces” field indicates the number of faces which were detected in the given
image. Each detected face has four attributes associated with it: horizontal position, vertical
position, height, and width. Since an image may contain a number of different faces, the
attributes (fields) associated with each particular face are saved in a separate “face table”.

The “Largest Face Size” field saves the height of the largest face detected in the given image, as
a percentage of image height. Although this information is also contained in the face table,
saving the information in the image table speeds some searches by eliminating the need to
perform a JOIN of the image table with the face table. An example is a search for a “close-up”
image. We define close-up images as images where the largest face has a height greater than
50% the size of the image.

An Example Search
A user is interested in finding small, close-up images of Rebecca De Mornay. They type
“Rebecca De Mornay” as the search text, and make selections as displayed in Figure 1.

Field Name Sample Data

File Name http://www.cdt.org/images/cdtlgo.gif

Source URL http://www.cdt.org/index.html

Color Depth 8 bit color

File Size 3,129 bytes

File Type gif

Image Width 204

Image Height 107

Is Image a Photograph? No

Is Image an Image Map? No

Is Image included as a Reference? No

Number of Faces 0

Largest Face Size 0%

10

The results page interface, shown in Figure 2, works as follows. Thumbnails of the resulting
images are displayed above a bar which indicates the size of the original image. Clicking on the
image will launch your browser to the URL original image. Clicking on the page icon to the
right of the image will launch your browser to the URL of the page which contains the image.

Figure 1: An image search query

The results were obtained as follows. Webseer searches for images which contain any of the
words contained in the text, after eliminating words that are especially common (e.g. connecting
words such as “and” and “the”). The results are sorted by the summed weight of the words
associated with that image. For instance, if one image has associated words “Rebecca”, with a

11

weight of 3, and “Mornay” with a weight of 1, that image would have a summed weight of 4.
Only images with a height or width < 150 pixels, with file size < 10K, which were determined to
be photographs, and which contain exactly one face whose height is at least 50% of the size of
the image are included in the results. Lastly, the results are sorted, first by the weighted sum of
associated words, and then, since “close up” was selected, by the detected face size (with the
largest faces appearing first).

Figure 2: Results of the query shown in Figure 1.

Image Content Analysis: Classifying Photographs and Drawings

The algorithm classifies images into photographs and artificial images, where the terms
"artificial images" and “drawings” are used to denote all images that are not photographs. There
are some borderline cases. The most common is images that contain a photograph and an
artificial part, which could be, for example, a computer-generated background or super–imposed
text. Currently, the algorithm is not designed to handle such images consistently.

The algorithm can be split into two independent modules. One module consists of tests
that separate photographs from drawings. After the image has been submitted to all the tests, the
decision-making module decides how it should be classified.

12

Tests

In every test an image gets a positive real number as a score. The images are represented
by three matrices, corresponding to their red (R), green (G), and blue (B) color bands, whose
entries are integers from 0 to 255. Photographs and drawings tend to score in different ranges.
These are the tests we currently use in the algorithm:

•The band difference test. We pick a threshold T between 0 and 255 and initialize the
counter C to 0. For every pixel in the image, let r, g, b be its respective values in the R, G, B
matrices. We look at |r - g|, |g - b| and |r - b|, and we increase the counter C by one for each of

those absolute values that is greater than T. The score of the image is

C

S
, where S is the number

of pixels in the image. We expect drawings to score higher than photographs, because the colors
used in drawings are usually highly saturated.

•The farthest neighbor test. We pick a threshold T between 0 and 255 and initialize
counters C and S to 0. For each inner pixel P of the image, we consider its top, bottom, left, and
right neighbor. For each neighbor, we calculate the absolute difference of its R value from the R
value of P, and we look at the maximum M of those four absolute differences. If M > 0, we

increase S. If, in addition, M > T, we increase C. The score of the image is

C

S
.

The rationale behind this test is to see how abrupt the color changes are in an image. In
photographs they tend to be smoother than in drawings. Therefore, drawings tend to score
higher than photographs in this test.

• The color test. We count the number of different colors in the image. Drawings tend
to have fewer distinct colors than photographs.

• The most common color test. We find the color that occurs most frequently in the

image. The score is

C

S
 where C is the number of pixels in the image that have that color, and S

is the total number of pixels in the image. Again, artificial images usually score higher than
photographs, because they tend to have a one-color background.

• The narrowness test. Let R be the number of rows and C be the number of columns in

the image. If R > C, then N =

R

C
, otherwise N =

C

R
, where the score of the image is N.

Photographs tend to score between 1 and 2, whereas drawings often score above 2.

For images saved in the JPEG format, the color test doesn't work because of the way
JPEG compression works. Neighboring pixels that have the same color in the original image
usually have similar but not identical colors after the compression. In addition, abrupt color
changes in the original images usually become smoother after compression. This makes the
farthest neighbor test less powerful.

13

Decision making

Since GIF and JPEG images tend to follow different scoring patterns in the tests we use,
the decision maker needs to know how images tend to score based both on their category
(photograph or drawing) and their compression format. So, for each of the four cases (GIF
photographs, GIF drawings, JPEG photographs, JPEG drawings), we created a training set of at
least 100 images, selecting representative images from the Web. For each test, we calculated
and stored the scores of all images in the training set. The minimum score is set so that 1% of
the images score below it. The maximum is defined in an analogous way. The set of scores
together with the minimum and the maximum is called the distribution of scores for that test. In
particular, if the training set contains photographs, the distribution is called natural, otherwise it
is called artificial.

Suppose we have a GIF image and calculate its score S on a particular test T. Consider
the natural distribution of scores for that test. If the score S is between the minimum and the
maximum score in that distribution, L is the percentage of scores in the distribution that are less
than or equal to S, and M is the percentage of scores that are greater than or equal to S. We
define the natural grade N of the image to be the minimum of L and M.

If the score S is less than the minimum, then R =
S

minimum and the natural grade N is

R

1000
. If S = 0, however, we set N to 0.001. If S is greater than the maximum, then R =

maximum

S and N =

R

1000
. We calculate the artificial grade A of the image in a similar way.

Based on these scores, we assign an overall grade between 0 and 1 to the image. The
higher the grade is, the more likely the image is to be a photograph. We fix a threshold T, and
we classify all images whose grade is over T as photographs and all other images as drawings.
This is how we calculate the grade:

• We initialize P and D to 1.

• For each test, we calculate the score of the image, and from the score we calculate the
natural grade N and the artificial grade A for that test. We set P to PN and D to DA.

• After we are done with all tests, we set the grade of the image to

P

P + D
.

The reader may have recognized that if, for each test, A was the conditional probability
that an image got the score S given that it was a drawing, and N was the conditional probability
that an image got the score S given that it was a photograph, then the grade of the image would
be the probability that it was a photograph given all its test scores and assuming that the different
tests have independent score distributions. In that case, we should classify all images scoring
over 0.5 as photographs and the rest as drawings. However, A and N are not defined to be the
conditional probabilities. So, the optimal classification threshold is not necessarily 0.5.

14

Nevertheless, it remains true that the grade is more reliable when the tests we use are pairwise
independent or approximately independent.

Results

The algorithm has been tested both on the training sets that we used, and on images that
we didn’t include in those sets. With the group of JPEG artificial images the algorithm was only
tested on a training set. We have found that purely artificial images in the JPEG format occur
less frequently than images in other formats.

The following tables give some experimental results:

• Table 1 gives results on GIF images. The first row gives the number of images for each
group. After that, each entry gives the percentage of correct classifications of images in the
given group when grades are calculated based on that test only. The group "GIF art1" is the
training set of GIF drawings. “GIF nat1” is the training set of GIF photographs. “GIF art2” and
“GIF nat2” are, respectively, sets of drawings and photographs that were not used in training.

• Table 2 gives results on JPEG images, in the same format as Table 1.

• Table 3 gives the values of all thresholds used.

Table 1: Results on GIF Images

GIF art1 GIF art2 GIF nat1 GIF nat2

number of images 395 339 129 112

band difference test 50.9 45.4 94.6 90.2

farthest neighbor test 86.6 89.1 89.1 83.1

color test 60.8 79.4 83.7 85.7

most common color test 81.0 88.5 92.2 85.7

ratio test 71.4 74.6 77.5 77.7

All tests combined 96.2 94.1 88.4 81.2

15

Table 2: Results on JPEG Images

JPEG art1 JPEG nat1 JPEG nat2

number of images 150 228 118

band test 13.3 98.7 97.5

farthest neighbor test 55.3 95.2 97.5

most common color test 66.7 98.2 91.5

ratio test 66.7 96.5 99.2

All tests combined 92.0 93.9 95.8

Table 3: Thresholds

GIF JPEG

band difference test 233 185

farthest neighbor test 100 150

grade 0.3 0.1

Current Work

We are currently working on improving the algorithm in three directions:

• Finding more tests and perfecting the ones we already have.

• Refining the decision-making module. In particular, we are interesting in finding a
way to use information from tests that are not pair-wise independent.

• Increasing the number of categories for classifying images. As a first step, we have to
create a category for images that contain both a photograph and an artificial part, and find a way
of locating each part in such images.

Examples of Images

http://www.nashville.com/~DavidFsFan/update.gif

This is a typical GIF drawing with a grade of less than 0.001, which was classified correctly. It
has only 3 colors, a ratio of columns to rows over 5, and abrupt color changes.

16

http://huizen.dds.nl/~evdmeer/kellie1.gif

This is a typical GIF photograph. There are no regions of constant color; the color transitions are
smooth. The grade of the image was 0.999.

http://www.pathfinder.com/@@dKvzf*AZdQAAQAkt/ew/950310/xfiles/CT78.gif

This is a misclassified GIF photograph with a grade of 0.019. It scores very high in the band
difference and most common color tests.

17

http://www.ozemail.com.au/~rellis/title.jpg

This is a misclassified JPEG drawing with an overall grade of 0.338. The color transitions are
smooth, and the only test on which it scores below the threshold 0.1 is the narrowness test.

http://www.pilotonline.com/boardwalk/images/beach.jpg

This is a misclassified JPEG photograph with a grade of 0.001. The color transitions are very
abrupt, and the image is unusually narrow.

Locating Faces

We are testing face finders written by Sung and Poggio [7] and Rowley, et. al. [8]. Both of
these approaches look for upright faces facing the camera. The results shown for Rebecca De
Mornay were obtained using Sung and Poggio’s code. The major drawback of Sung and
Poggio’s algorithm is efficiency; finding all the faces in a large image can take minutes (on a
Sun Sparc 20 with 125 MHz hyperSparc processors) whereas we can only afford an average of
fractions of a second per image. We have also experienced problems with false positives using
Sung and Poggio’s code with its default settings.

18

Rowley et. al.’s code is considerably more efficient, as has been reported in [8], and so is more
suitable for our application. Published results indicate that the effectiveness is about the same as
Sung and Poggio’s on grayscale images. We hope to increase the effectiveness and efficiency by
looking for faces only in photographs, and using color to select regions of interest for the face
finder, since most of the photographs on the Web are color.

Scaling Up
Techniques for content-based retrieval that work with a hundred, a thousand, or even ten-
thousand images will not necessarily scale up to the task of indexing all the images on the World
Wide Web. There are an estimated 30 million Web pages (HTML documents). Our preliminary
experiments indicate there may be about one-third as many images as Web pages, meaning about
10 million images to index. Rough calculations suggest that WebSeer’s database will be about
1.5 GB, and storing thumbnails will take up about 15 GB of disk space. Crawling the Web to
index all the images will require downloading them all. Our current multi-threaded Web crawler
can download many pages per second, running on a 200 MHz Pentium Pro PC attached to a dual
T1 line shared with the rest of the University. Since projected improvements in networking
infrastructure will improve this performance substantially, image processing, face finding in
particular, is likely to be the bottleneck. We will expend considerable effort optimizing the
image processing algorithms used in the crawler.

Future Work
We view the photograph vs. drawing distinction as a starting point toward a more general image
taxonomy. We are working on identifying a taxonomy that fits users’ needs and is constructed of
image classes that can be reliably identified. Some of these categories may include
advertisements, geographic maps, landscapes [9], city/country scenes [5][10], night scenes,
sunsets, scenes with foliage, and so on.

Tomasi and Guibis descibe a system which classifies types of images based on image content
alone [11]. We believe that we need a close interaction between the image understanding
algorithms and the associated text indexing algorithms in order to successfully categorize
images. Srihari’s theory of “visual semantics” [12] provides useful insight into some of the
challenges of integrating text indexing with image understanding algorithms.

A closer interaction between text and image processing will also provide significant
improvements in indexing speed. Detecting faces in an image is an example of an image
understanding algorithm which requires a relatively large amount of processing time. By only
running those algorithms on images whose results are likely to be useful, we believe that we can
save significant processing time per image.

As more functionality is added to WebSeer, the interface should get simpler, not more
complicated. The selections of some image content combination boxes, for example, could be
assumed from the text of the query that the user enters. Consider the query “Bill and Hillary
Clinton.” The capitalization of the first letters of the words “Bill” and “Hillary” provides a clue

19

that the words are proper nouns, and the words “Bill” and “Hillary” can be found in a list of
common first names. This information can be used to direct the search towards images in which
two faces were detected.

The approach and a considerable fraction of technology from WebSeer should be applicable to
other multimedia databases containing structured text and images, including newspaper or
magazine archives, and video annotated by closed captions.

20

Appendix A:

HTML source code for several web sites demonstrating some of the ways in which

image “captions” may be included in a structured HTML document.

http://www.lib.uchicago.edu/~mozart/Marilyn/monthly.html

<HTML><TITLE>Marilyn Monroe Picture of the Month</TITLE>

<BODY BGCOLOR="#FFFFFF">

<HR>

<center>

<H1>Picture of the Month

July 1996</H1>

On July 6, 1962, Allan Grant took these beautiful pictures of

Marilyn

in her home to accompany an interview that appeared in the August

3, 1962 issue of Life. It was her last photo session.

<P>Photographs ©copyright Allan Grant.

</center>

<P>

<HR>

Return to: Marilyn Monroe

<ADDRESS>Peggy L. Wilkins / (312)702-8780 / mozart@uchicago.edu

</ADDRESS>

</BODY>

<HTML>

21

Excerpt from http://studentweb.tulane.edu/~llovejo/marilyn/

<HTML>

<HEAD></HEAD>

<BODY BGCOLOR=#000000 TEXT=#DB9370 LINK=#FF00FF VLINK=#EAADEA

ALINK=#FF0000>

<BASEFONT SIZE=4>

<CENTER>

<IMG SRC=../images/Marhead.jpg HEIGHT=144 WIDTH=288 ALT="Lovejoy’s

Marilyn Monroe Image Gallery">

</CENTER>

Although there is a slim possibility that Marilyn

Monroe is not the most beautiful woman I have ever seen, she

posessed an ability to command attention greater than any other’s

and can still, after so many years, captivate me. I have collected

images from fans and from around the net in one large archive of her

images.<P>

<TABLE BORDER=0 CELLSPACING=30>

<TR VALIGN=BASELINE>

<TR VALIGN=BASELINE>

<TD>

Favorites from the net

</TD>

<TR VALIGN=BASELINE>

<TD>

Marilyn on the beach

</TD>

</TR>

</TABLE>

22

http://tomahawk.cf.ac.uk/~scotw/marilyn/page2/page2.html

<TITLE>Marilyn Monroe Images - The ventilator scene</TITLE>

</head><body>

<hr>

<h3><i>Marilyn Archive - The ventilator scene</i></h3>

<hr>

To retrieve an image click on the list below the thumbnails.

<hr>

<hr>

| mm-053.jpg | mm-

054.jpg |

<hr>

<hr>

mm-055.jpg | mm-

055a.jpg N-mm49.jpg

<hr>

<h3><i>Acknowledgement</i></h3><p>

These pictures are courtesy of a bunch of Film Magnates.

23

Appendix B:

Below is an example of a robot exclusion file which restricts access to directories which contain
only images. Note the entries containing /acis/gif/, /cu/libraries/events/sw25/gifs/,

/cu/libraries/gifs/, and /gif/. The author of this file has informed us that these
restrictions were included since he believes that current robots are only interested in indexing
textual information, and these directories contain no text [13].

http://www.columbia.edu/robots.txt

this file is read by any robot that conforms to the WWW

robot

guidelines described here:

http://www.nexor.co.uk/mak/doc/robots/norobots.html

User-agent: *

Disallow: /acis/eds/triarc

Disallow: /acis/gif/

Disallow: /acis/poetry/

Disallow: /cgi-bin/

Disallow: /cp/

Disallow: /cu/libraries/events/sw25/gifs/

Disallow: /cu/libraries/gifs/

Disallow: /cu/libraries/inside/

Disallow: /cu/spectator/

Disallow: /cu/distrib/

Disallow: /experimental/

Disallow: /gif/

Disallow: /httpd/reports/

Disallow: /imaging/

Disallow: /tc/

Disallow: /waissources/

24

References
[1] Ogle and Stonebraker (1995). Chabot: Retrieval from a Relational Database of Images. IEEE

Computer, 28(2), 49-56.

[2] Nancy A. Van House, Mark H. Butler, Virginia Ogle, and Lisa Schiff. User-Centered
Iterative Design for Digital Libraries: The Cypress Experience. D-lib Magazine, Feb 1996,
ISSN 1082-9873.

[3] Srihari, Rohini K. (1995). Automatic Indexing and Content-Based Retrieval of Captioned
Images. IEEE Computer, 28(2), 49-56.

[4] Flickner, Myron, et. al. (1995). Query by Image and Video Content: The QBIC System. IEEE
Computer. September, 1995 Volume 28, pgs. 23-32.

[5] R.W. Picard (1996). A Society of Models for Video and Image Libraries. Media Laboratory
Perceptual Computing Section Technical Report No. 360.

[6] T.P. Minka and R.W. Picard (1995). Interactive Learning using a “society of models”. MIT
Media Laboratory Perceptual Computing Section Technical Report No. 349.

[7] Kah-Kay Sung and Tomaso Poggio (1994). Example-based learning for view-based human
face detection. Technical Report A.I. Memo 1521, CBCL Paper 112, MIT, December 1994.

[8] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade (1995). Human Face Detection in
Visual Scenes. Carnegie Mellon University Technical Report CMU-CS-95-158.

[9] Markus Stricker and Alexander Dimai (1996). Color Indexing with Weak Spatial Constraints.
SPIE Conference, February 1996, San Jose, CA.

[10] R.W. Picard and T.P. Minka (1995). Vision texture for annotation. Journal of Multimedia
Systems, vol. 3, pp 3-14.

[11] C. Tomasi and L. Guibas (1994). Image Descriptions for Browsing and Retrieval.
Proceedings of the ARPA Image Understanding Workshop, November 1994, pp. 165-168.

[12] Srihari, Rohini K. (1995). Use of Multimedia Input in Automated Image Annotation and
Content-Based Retrieval. Presented at Conference on Storage and Retrieval Techniques for
Image Databases, SPIE ’95, San Jose, CA, February 1995.

[13] Beecher, Ben (1996) Personal Communication. AcIS R&D Columbia University.

