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Abstract rough geometrical correspondence. This is either obtained
ghg | pol C .

We propose a method to learn heterogeneous models oPY segmentation and warping/alignment of each object’s
object classes for visual recognition. The training images Picture, or by direct manual identification of the main fea-
contain a preponderance of clutter and learning is unsuper- tures. I_n elther case intervention of_ an operator and/or con
vised. Our models represent objects as probabilistic con-trOIIecj Imaging gondmons are required [9, 2, 3’h4' 6, 1].
stellations of rigid parts (features). The variability Wih In 2 companion paper we propose a met Oq [11] for
a class is represented by a joint probability density func- learning object classes from cluttered images without su-

tion on the shape of the constellation and the appearancepems'o.n' Tfhe models E)Ta:]we use are Gaugs_lan den5|t||es,
of the parts. Our method automatically identifies distinc- appropriate for reasonably homogeneous fraining examples

. . . We expect that in most practical applications the data will
tive features in the training set. The set of model parame- o multi-modal; variability in the data could be due to the

ters is then learned using expectation maximization (see th presence of objects from several distinct classes, a single
companion paper [11] for details). When trained on differ- opject class being seen from different viewpoints, or visu-
ent, unlabeled and unsegmented views of a class of objectsally distinct sub-classes of the same object. In this pager w
each component of the mixture model can adapt to repre-extend our method to handle such diversity.

sent a subset of the views. Similarly, different component )

models can also “specialize” on sub-classes of an object 2 Overview of the Approach

class. Experiments on images of human heads, leaves from We model object classes following the work of Burl et
different species of trees, and motor-cars demonstrate tha al. [3]. An object is composed gfarts andshape where

the method works well over a wide variety of objects. ‘parts’ are image patches which may be detected and char-
) acterized by appropriate detectors, and ‘shape’ desdtiees
1 Introduction and Related Work geometry of the mutual position of the parts in a way that is

When we look at the first few images of Fig. 1 we see invariant with respect to rigid and, possibly, affine tramsf
‘cars.” We may be unable to name a specific car model, butmations [10]. A joint probability density on part appearanc
we can easily recognize a car as such. ‘Cars’ is an abstracand shape models the object class. In this paper we show
object class that we have constructed through experiencghat, usingmixturesof probabilistic models of this type, it
and which we may use for labelling previously unseen ob- is possible to model object classes exhibiting a large degre
jects. of variability.

We are interested in the problem of learning object  Object detection is performed by first running part de-
classes from unsupervised visual experience: given the im-tectors on the image, thus obtaining a set of candidate part
ages of Fig. 1, can the visual concept of ‘car’ be learned locations. The second stage consists of forming likely ob-
automatically? The main challenge we face is identifying ject hypotheses, i.e. constellations of appropriate ffargs
the relevant objects amongst a preponderant amount of ireyes, nose, mouth, ears); both complete and partial con-
relevant clutter. Unfortunately, we do not even know in ad- stellations are considered, in order to allow for partial oc
vance what to look for: the concept of ‘car’ will emerge clusion. The third stage consists of using the object’stjoin
from the process—for all that we know our training images probability density for either calculating the likelihotitht
could depict shoes or some type of deep-sea fish. any hypothesis arises from an object (object detection), or

This problem has not yet been tackled in the computer vi- the likelihood that one specific hypothesis arises from an
sion literature. Traditionally, object recognition stavtith object (object localization).

a training set where the salient parts of each object are in In order to train a model we need to decide on the key



Figure 1. Some of the images contain instances of object classes
(cars and leaves), others contain only “background.” How &a
machine learn to recognize these objects without any funtifier-
mation?

parts of the object, select corresponding parts (e.g. eyes,
nose etc.) on a number of training images, and lastly we
need to estimate the joint probability density function on
part appearance and shape. Burl et al. [2] perform the first
and second act by hand, while our methods automate the
first and second steps as well.

Our technique for selecting potentially informative fea-
tures/regions is composed of two steps: first highly texture
regions are detected in the training images by means of a
standard ‘interest operator’ or keypoint detector. An un-
supervised clustering step favoring large clusters wiibite
to select features that correspond to the objects of irteres
rather than the background. Appropriate feature detectors
may be trained using these clusters. This method has been
described in detail in [11] and will not be discussed here.

In order to learn an object class model from a set of train-
ing images, we need to decide on a small subset of the parts
selected by the feature selection method and we then need
to learn the parameters of the statistical model. We solve
both problems by iteratively trying out promising subsets
of parts. During each iteration, the model parameters are
estimated usingxpectation maximizatioftM). At the end
of each iteration, the detection performance of the model is
evaluated using a validation data set. Based on the perfor-
mance, a part in the model might be exchanged against a
more promising one.

The best performing model generated in such fashion is
in the end selected as ‘the model'.

Outline of the Paper

In Section 3 we review the theory underlying our prob-
abilistic object model before we introduce the extension to
mixture models. In Section 4 experimental results are pro-
vided for three datasets: cars, leaves and human heads. Ex-
plicit update rules for mixture model learning are given in
the appendix.

3 Mixtures of Probabilistic Object Models

In this section, we first give a brief description of our ba-
sic object model before introducing the extension to mixtur
models. We then provide detailed definitions of the differ-
ent model components.

3.1 Basic Generative Model

We model objects as collections of rigid parts [3]. Dur-
ing recognition, each part type is detected by a correspond-
ing detector. After the part detection stage, an entire im-
age is thus reduced to a collection of parts as well. Some
of those parts might correspond to an instance of the tar-
get object class (théoreground, while others stem from
background clutter or are simply false detections ftaek-
ground. Throughout this paper, the only information asso-
ciated with an object part is its position in the image and its
identity or parttype We assume that there afedifferent
types of parts. The positions of all parts extracted from one



image are collected in a “matrix,” We can write our complete model as

Q
T11Z125--- ; T1N, 0 —m _ 0 Lm
T21222, ... , L2N, p(X X ’h)*ZP(X i X ,h\w)p(w).
Xo — ) , w=1
S . The conditional density(X °, x™, h|w) represents compo-
P T

nent modelv. Every component model is based on its own
set of parameters, explaining how the partsXifi can be
arranged spatially in an image. However, not every compo-
nent needs to make use of all part types in order to model
the foreground. Hence, under certain component models,
w Part candidates of certain types can only be accounted for
as background clutter.

The probabilitiegy(w) express our a priori expectation

where the superscripd” indicates that these positions are
observeabli an image, as opposed to being unobserveable
or missing which will be denoted byri:.” Thus, thett row
contains the locations of detections of part typevhere
every entry,z;;, is a two-dimensional vector. If we no
assume that an object is composedrotifferent parts'
we also need to indicate which parts ¥¥ correspond to f lainina the data with tmodel
the foreground (the object of interest). For this we use the OF EXpiaining the data with componentmo

vectorh, a set of indices, witth; = j, 7 > 0, indicating 3.2.1 Model Dgtalls ) o

that pointz;; is a foreground point. If an object part is not In order to provide a detailed parametrization of (1), we

contained inX°, because it is occluded or otherwise un- introduce two auxiliary variabled andn. The binary vec-
detected, the corresponding entrytirwill be zero. When ~ t0r'b encodes information about which features have been

presented with an unseen image, we do not know whichdetected and which have been missed or occluded. Hence,

parts correspond to the foregound. Thereférés not ob- 0y = 11if by > 0-andb; = 0 otherwise. The variabla
serveable and we will treat it dsddenor missingdata. We IS &lso a vector, where; shaII.denothe the number bfick-
call h ahypothesissince it expresses which parts¥f are  groundcandidates included in thé" row of X°. Since
hypothesized to belong to the foreground object. It is also POth variables are completely determinedibgnd the size
convenient to represent the positions of any unobserved obof X7, we havep(X?, x™, h) = p(X?,x™ h,n,b). We
ject parts in a separate vectdr which is, of course, hidden ~ ¢an now decompose in the following way

as well. We can then define a generative probabilistic model P(XOx™ honb,w) = p(X° x"|h,m,w) X

through the joint probability density
p(hin, b, w) p(n) p(blw) p(w).  (2)

The probability density over the number of background
detections can be modeled by a Poisson distribution,

p(X?%,x™ h). (1)

Before we give a detailed definition of this density, we ex-

plain how we construct mixtures based on this model.
1 _
3.2 Mixture Model pn) = [[ —(mp)me ",

We assume that a mixture model consist§)adifferent

components. Each component is a complete model of theyhere 7, is the average number of background detections
type introduced in the previous section. Our learning and of type per image. Note that the background statistics are
detection algorithms are set up such that, during recogni-gssumed independent of the model compoaent

tion, these mixture components will “compete” for the ex- Depending on the number of featurds, we can model
planation of an input image. Thus, an image containing he probabilityp(b|w) either as an explicit table (of length
an instance of an object class can only be generated or €X2F) of joint probabilities, or, ifF” is large, as independent

plained by a single mixture component. We follow, in this probabilities, governing the presence of an individual elod
respect, the spirit of the “mixture of experts” frameworkin  faature.

troduced in [7]. However, we do not use a true mixture of |1 g important to realize that the probabilipfb|w) for

experts model, in which a separaating networkis typi- 5 yectorb which is not consistent with model (e.g. it
cally used to divide the input space into regions of respon-yhothesizes a feature type to be detected which is not used
sibility for each expert. for the foreground in this component model) is defined to

One can also imagine an approach under which modelpe zero.
components “collaborate.” Each component could then ex-  The density(h|n, b, w) is modeled by,
plain only a subset of the object parts in the entire image and
several experts need to be “active” for a given image. For —L — heHbnw)
a more detailed discussion of competitive vs. collaboeativ p(hln,b,w) = { 5=, N,/
learning see [8]. 0 otherh

1To simplify notation, we only consider the case whéte= T'. The where’_}—l(b, n,w) denotes the set of all hypotheses consis-
extension to the general casé {> 1) is straightforward. tent with b, n andw, and Ny denotes the total number



of detections of the type of feature This expresses the Since the objects to be learned were in a different, un-
fact that all consistent hypotheses, the number of which isknown location in every training image, we employed a

H}le N]ff, are equally likely in the absence of information translation invariant extension of our method (see [2] for

on the feature locations. a discussion on invariance to planar transformations). We
Finally, we use tried, however, to assert that the objects had the same size
in all images, since we have not yet implemented scale in-
p(X?, x"h,n,w) = peg(x°, X" |W) Pbg (Xbg): variant learning.

where we definedx® x™] as the coordinates of all fore- 4.1 Training and Test Images

ground detections (observed and missing) apdas the  Human Heads: In order to produce a large set of im-

coordinates of the background detections. In our experi- agges with different but known head orientations, a sufficien
ments,peg (x?, x™|w) is modeled as a joint Gaussian with  nymber of subjects, as well as different, cluttered back-
meany,, and covariance&l,. The positions of the back-  grounds, we resorted to a synthetic blending of head im-

ground detections are modeled by a uniform density, ages with background scenes. Subjects were photographed
T in front of a blue background, facing different viewing
(9) = [[ 1 directions (°(frontal), 15°, ... ,90°(profile)). The back-
Pbgl¥bg Ane’ ground was then subtracted from the images (which were
=t converted to grayscale) and replaced with entirely white or
whereA is the total image area. black regions to produce training images, as well as with
3.3 Classification random scenes to produce test images (see FigSapilar

Throughout the experiments presented here, our objec-SCENES, without superimposed heads, were used as negative
tive is to classify images into the classes “object present” €xamples. We usetD) subjects for training antl different
(classC;) and “object absent” (clas,). Given the ob-  Subjects for testing. Four pictures were taken of each sub-
served datax °, the optimal decision—minimizing the ex- J€ct at every viewing direction. Subjects were asked to keep
pected total classification error—is made by choosing the @ straight face and head orientation for the first two images.
class with maximum a posteriori probability (MAP ap- For the other two they were allowed to ilt their head, rotate

the following ratio, of their choice. The resolution of the training images was
such that the distance from top of the head to chin spanned
p(C1/X°)  Don,p(X° hw|Ch) abouts0 pixels.
p(ColX0) x > (X0, h,w|Co) (3) The set of background scenes contaifigd pictures of

landscapes, outdoor scenes of buildings, as well as indoor
whereh, denotes thaull hypothesisvhich explains allfea-  scenes of office and laboratory environments. This set was
tures as background noise. The sum in the numerator in-divided into two sets ol 75 pictures each for training and
cludes all hypotheses, also the null hypothesis, sincelihe o testing.
ject could be present but remain undetected by any featur
detector. In the denominator, the only consistent hypdghes
to explain “object absent” is the null hypothesis.

Although we are here concerned with classification only,
our framework is by no means restricted to this problem.
For instance, object localization is possible by identifyi
those foreground features in an image, which have the high
est probability of corresponding to an occurrence of the tar
get object.

3.4 Model Learning

A detailed description of our learning method can be Cars: We took300 images {50 rear views and 50 side
found in [11] for the case of single-component models. We views) on public streets and parking lots showing cars in
do not have space to reproduce the method here. Howeveirfront of a cluttered background (Fig. 1 bottom). We also
explicit update rules of our learning algorithm for the case took 200 images of background scenes from the same en-
of mixture models have been included in the appendix. vironment. We photographed vehicles of different sizes,

. colors and types, such as sedans, sport utility vehiclek, an
4 Experiments

; ... pick-up trucks.
We chose to validate our method under the classification

problem defined in Section 3.3, using three different data 2Although we have demonstrated that our method can learn Isiofle

sets: images of rear and side views of cars, images of hu_human heads from entirely unlabeled cluttered scenes, wle ose of this

heads. tak f viewi directi f segmentation step in order to speed up the training prodg#sinating
man heads, [aken over a range or viewing airéctions romy,o background helped by reducing the number of featuree tddd and

frontal to profile, ar_1d images of a sample of leaves from py speeding up the convergence of the EM stage due to the atbsén
three different species of trees. background detections.

%_eaves: We used completely unlabeled and unsegmented
images throughout the leaf (and car) experiments. We col-
lected six leaves from each of three different species eftre
and photographed each lgdftimes in front of an arbitrary
background, producint80 images (see Fig. 1 bottom). An-
_other150 images from the same indoor laboratory environ-
ment were taken as negative examples. As in the other ex-
periments, both sets were divided into an independenttrain
ing and test set.
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Figure 3. A sample of the patterns obtained from our feature
selection method (based on k-means clustering) is showeafsr
(left), heads (center) and leaves (right). The leaf and rwages
were high-pass filtered before feature selection. The tatah-
ber of patterns selected wag5 for heads (across @° range of
viewing directions) 89 for cars (across two orthogonal viewing di-
rections) and1 for leaves.

4.3 Results
Classification Performance

To assess classification performance, we learned models
with two mixture components of three features each.

We found the EM algorithm to converge in abolit)
iterations. One iteration took abo2@0ms using a Matlab
implementation with subroutines written in ‘C’. The entire
training process took several hours on a PC withMHz
Pentium Il processor.

Rather than classifying every image by applying a fixed
decision threshold according to Equation 3, we computed
receiver operating characteristics (ROCs) based on tlee rat
of posterior probabilities. In order to reduce sensitivtity
noise due to the limited number of training images, we used
the area under the ROC curve as a measure of the classi-
fication performance driving the optimization of the model

Figure 2. Examples from the human head database. Segmented
heads are superimposed on black and white backgroundsfior tr
ing (top), and on random background scenes for testing €cent

For half of the images, subjects were allowed to make facial e configuration. In Figure 5, we report total classification er
pressions and to tilt or rotate their head around the camésa@n rors which are computed by choosing a decision threshold
the bottom we show random background scenes used as negative  such that the same error rate on foreground and background
test examples. images is obtained. The differences between training and

. _ . _ test errors in the Cars and Leaves experiments suggest that
The car and leaf images were high-pass filtered in orderwe have experienced a certain degreewérfiting The
to promote invariance with respect to different colors ca  asymptotical classification error for an infinitely largaitr-

and different lighting conditions. All images were taken ing set lies somewhere between our observed training and
with a digital camera; they were converted to a grayscaletest error.

representation and downsampled to a resolutioR4ef x One might also be surprised by the limited improvement
160 pixels. No images were discarded by hand prior to the of the mixture models over the single component models.
experiments. The reason for this is the remarkable performance of sin-

The EM model learning was carried out on the positive gle component models which, e.g., in the case of heads are
training images. In order to optimize for the model configu- often able to work realiably over a large range of viewing
ration, the classification performance of the model was-eval directions (see also Fig. 4).

uated after each pass of EM, using the positive and negative  Examples of misclassifications are shown in Fig. 7.
training images. No individual car/head/leave was present-runing of Mixture Components
in the testandtraining set at the same time. The final model

was tested on the previously unseen target and backgrounﬂ1ree (leaves), and four (heads) components of three fea-
Images. tures each, exhausting the entire set of available data. We
4.2 Automatically Selected Parts then investigated the tuning properties of the individual
Parts were automatically selected according to the proce-component models by assigning every training image to that
dure described in [11]. The Forstner interest operator wasparticular componenty,, for which the “responsibility,”
applied to the positive training images. We then extracted p(w;|X°), was maximal. If no component had a respon-
patches of sizd1 x 11 around the points of interest and sibility of more than80%, we assigned the corresponding
clustered those using vector quantization. A different§et image to an “undecided” category. We were able to observe
patterns was produced for each object class (Fig. 3). clear tuning characterstics for all three data sets. Indise c

For this experiment, we learned models with two (cars),



Figure 4. Analysis of a four-component mixture model with
three features per component. This model was trained oerthe
tire set of available sata. We show the three parts selected é¢br ea
component (left) by our training algorithm. Ellipses inaling a
three-standard deviation distance from the mean partiposiac-
cording to the Gaussian pdf governing the foreground paitipas
are shown (center). They have been superimposed on araaybitr
image for which the corresponding component had a high tresp
sibility.” Since our models are translation invariant, thedels
have been aligned with the image by hand for illustrativeppaes.
On the right we show a second arbitrarily selected image,\aith

a high responsibility of the corresponding component. Etete
candidate part locations are shoamly for the three part types of
the respective component £ ‘A, O ='B’, & ='C’). Note that the
model components are able to represent the heads overyddege
range of viewing directions—about;° in this case—mainly due
to the stability of the chosen features. This effect was evene
pronounced when we trained models with only two components
over a90° viewing range. In this case, single components were
often able to detect a head over the entire range. Henceathsad
could be considered not difficult enough for the mixture mede

Cars Heads Leaves
# comp. 1 2 1 2 4* 1 2 3*
train 17% | 12% | 14% | 13% | 5% | 8% 8% | 6%
test 18% | 16% | 14% | 13% | n/fa | 16% | 16% | n/a
ZFA-DR | 46% | 54% | 57% | 61% | n/fa | 59% | 60% | n/a

Figure 5. Testand training performance for the detection exper-
iments. We show the total misclassification error, obtaiaethe
decision treshold where an equal number of positive andtivega
images is misclassified. We also report the detection rarerat
false alarms (ZFA-DR). This performance is important foplaga-
tions such as digital library searchesModels with three (leaves)
and four (heads) components were trainedlbravailable data for
the tuning experiments.

of leaves, only a model with three components showed tun-
ing characteristics, but not with two. In the head experi-
ment we only observed tuning for models with at least four
components. Figure 6 shows histograms illustrating these
findings. In both cases, each model component is between
two and four times as likely to detect a particular view or
sub-class than any other.
Separately Trained Components

In another experiment, we trained single component
models separately on labeled side and back views of cars.
We repeated this experimenit8 times, to avoid local ex-
trema and obtained an average performan@®2#f correct
for back views an®6% correct for side views. We then
merged those models into two-component models, choos-
ing p(w) = 0.5 for both components. The performance of
the resulting models was onf$% correct on average and,
therefore, significantly worse than those of two-component
models trained on unlabeled data with our algorithm for
mixture model learning. Hence, it appears that training
componentsimultaneouslys vital to exploit the benefits
of our mixture models.

5 Discussion and Future Work

We have presented ideas for learning mixture models of
objects from inhomogeneous training images in an unsu-
pervised setting. A set of unsegmented and unlabeled im-
ages (in the case of leaves and cars) containing examples
of objects amongst clutter is supplied; our algorithm auto-
matically selects distinctive features of the object ¢lassl
learns the joint probability density function encoding the
object’s appearance. This allows the automatic construc-
tion of an efficient object detector which is robust to clutte
and occlusion.

We have demonstrated that our model learning algo-
rithm works successfully on three different data sets: hu-
man heads viewed over®° range of viewing directions,
cars seen from the rear and the side, and images of three
different species of leaves. In the case of heads, discaimin
tion of images containing the desired object vs. background
images approaché®)% correct with simple models com-
posed of 2 components with 3 features each. Performance
on cars is84% correct and on leaves we obtaingis cor-
rectly classified test images. The detection rate at zese fal
alarms was consistently above 50%—and often significantly
higher—which is promising for content-based searching of
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Figure 6. Histograms showing tuning properties of the mixture
models models. For every component model the number of ismage
for which it is “responsible” is plotted. The right-most g of
bars show “undecided” images, where no model reached a @alue
more thand0% probability. The number of components was two
(cars), three (leaves) and four (heads). Head models wenrel fm

be partially tuned to head orientation but also to small iemg
differences in head sizes in our data sets.

large image databases. We demonstrated that our method
is capable of identifying different sub-classes amongst th
unlabeled training images. These sub-classes are due to dif
ferent viewpoints (cars, heads) or genuinely different sub
categories (leaves).

While training is computationally expensive, requiring
several hours of computer time on training sets composed.pice of the algorithms deserves further scrutiny as well.
of approximately 100 images, detection is efficient, requir An important aspect where our implementation falls short
ing less than half a second in our hybrid *C-Matlab im- ¢ generality is invariance: the models we learned anddeste
plementation. This suggests that training should be seen ag e transiation invariant, but not rotation, scale or affine
an off-line process, while detection may be implemented in jnyariant. There is no conceptual limit to this generaliza-
real-time. tion, although the computational cost grows significantly.

Many aspects of our implementation are suboptimal andWe also need to explore a principled way of deciding on
susceptible of improvement. To list a few: we imple- the number of mixture components. This could be done
mented the part detectors using normalized correlation.by monitoring the generalization error as a function of the
More sophisticated detection algorithms, involving mul- number of components. Finally, the possibility to tradé-of
tiscale image processing, multiorientation-multiresiolu the number of components against the number of parts in
filters, neural network etc. should be considered and testedevery component should be investigated.

Moreover, in our current implementation only part of the

information supplied by the detectors, i.e. the candidate Acknowledgements

feature’s location, is used; the scale and orientation ef th Funded by the NSF Engineering Research Center for
image patch, parameters describing the appearance of th&leuromorphic Systems Engineering (CNSE) at Caltech
patch, as well as its likelihood, should be incorporated. Ou (NSF9402726), and an NSF National Young Investigator
interest operator as well as the unsupervised clustering ofAward to P.P. (NSF9457618). M. Welling was supported
the features have not been optimized in any respect; theby the Sloan Foundation.

Figure 7. Examples of misclassified images from the three test
sets.



We are also very grateful to Rob Fergus, Catharine Explicitely, p(X?|w) is calculated as follows. Choose a hy-
Stebbins and Justin Smith for helping with collecting the pothesis consistent with the observed data. Integrate out
databases. We are grateful to Thomas Leung, Mike Burl, the missing data by eliminating the appropriate dimensions
Jitendra Malik and David Forsyth for many helpful com- from the Gaussian foreground pdf. Calculdiéh) and
ments. n(h) and insert them into the joint density. Finally, sum

over all possible hypotheses. The expectations of thesstati
A M-step and E-ste_p _ _ _ tics are calculated in a similar fashiot, [d, 3] is calcu-
_ For details on_the derivation of our basic Iear_nlng algo- |5ted by summing only over those hypotheses consistent
rithm the reader is refered to [11], where we derive the Up- with b in the numerator and dividing by(X?|w). Sim-

date rules for a single component model. o ilarly, E,,[n] is calculated by averaging(h) over all hy-
We employ the EM algorithm to optimize the likelihood potheses. FaE,[z] = (x° E,[x™]) we need

of the observed data, B
d / X" G2, Bu) dx™ = pl + 00807 (%0 - i),
LX) = D tog 3 [ o0, x o) dx '

i=1  hw; " where we definegh,, = (u2 u!') and a similar decompo-
] sition for X,. For the calculation ofz, [zz” ] we need the
with respect to the model parametersd = following result

{tw, L., p(blw), M, p(w)}. Since this is difficult
to achieve analytically, EM iteratively maximizes a E[x"x™']=ymm_ymeyeo-tymol g ixmE,[x™".
sequence of cost functions,
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