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Abstract
We propose a method to learn heterogeneous models of

object classes for visual recognition. The training images
contain a preponderance of clutter and learning is unsuper-
vised. Our models represent objects as probabilistic con-
stellations of rigid parts (features). The variability within
a class is represented by a joint probability density func-
tion on the shape of the constellation and the appearance
of the parts. Our method automatically identifies distinc-
tive features in the training set. The set of model parame-
ters is then learned using expectation maximization (see the
companion paper [11] for details). When trained on differ-
ent, unlabeled and unsegmented views of a class of objects,
each component of the mixture model can adapt to repre-
sent a subset of the views. Similarly, different component
models can also “specialize” on sub-classes of an object
class. Experiments on images of human heads, leaves from
different species of trees, and motor-cars demonstrate that
the method works well over a wide variety of objects.

1 Introduction and Related Work
When we look at the first few images of Fig. 1 we see

‘cars.’ We may be unable to name a specific car model, but
we can easily recognize a car as such. ‘Cars’ is an abstract
object class that we have constructed through experience
and which we may use for labelling previously unseen ob-
jects.

We are interested in the problem of learning object
classes from unsupervised visual experience: given the im-
ages of Fig. 1, can the visual concept of ‘car’ be learned
automatically? The main challenge we face is identifying
the relevant objects amongst a preponderant amount of ir-
relevant clutter. Unfortunately, we do not even know in ad-
vance what to look for: the concept of ‘car’ will emerge
from the process—for all that we know our training images
could depict shoes or some type of deep-sea fish.

This problem has not yet been tackled in the computer vi-
sion literature. Traditionally, object recognition starts with
a training set where the salient parts of each object are in

rough geometrical correspondence. This is either obtained
by segmentation and warping/alignment of each object’s
picture, or by direct manual identification of the main fea-
tures. In either case intervention of an operator and/or con-
trolled imaging conditions are required [9, 2, 3, 4, 6, 1].

In a companion paper we propose a method [11] for
learning object classes from cluttered images without su-
pervision. The models that we use are Gaussian densities,
appropriate for reasonably homogeneous training examples.
We expect that in most practical applications the data will
be multi-modal; variability in the data could be due to the
presence of objects from several distinct classes, a single
object class being seen from different viewpoints, or visu-
ally distinct sub-classes of the same object. In this paper we
extend our method to handle such diversity.

2 Overview of the Approach
We model object classes following the work of Burl et

al. [3]. An object is composed ofparts andshape, where
‘parts’ are image patches which may be detected and char-
acterized by appropriate detectors, and ‘shape’ describesthe
geometry of the mutual position of the parts in a way that is
invariant with respect to rigid and, possibly, affine transfor-
mations [10]. A joint probability density on part appearance
and shape models the object class. In this paper we show
that, usingmixturesof probabilistic models of this type, it
is possible to model object classes exhibiting a large degree
of variability.

Object detection is performed by first running part de-
tectors on the image, thus obtaining a set of candidate part
locations. The second stage consists of forming likely ob-
ject hypotheses, i.e. constellations of appropriate parts(e.g.
eyes, nose, mouth, ears); both complete and partial con-
stellations are considered, in order to allow for partial oc-
clusion. The third stage consists of using the object’s joint
probability density for either calculating the likelihoodthat
any hypothesis arises from an object (object detection), or
the likelihood that one specific hypothesis arises from an
object (object localization).

In order to train a model we need to decide on the key



Figure 1. Some of the images contain instances of object classes
(cars and leaves), others contain only “background.” How can a
machine learn to recognize these objects without any further infor-
mation?

parts of the object, select corresponding parts (e.g. eyes,
nose etc.) on a number of training images, and lastly we
need to estimate the joint probability density function on
part appearance and shape. Burl et al. [2] perform the first
and second act by hand, while our methods automate the
first and second steps as well.

Our technique for selecting potentially informative fea-
tures/regions is composed of two steps: first highly textured
regions are detected in the training images by means of a
standard ‘interest operator’ or keypoint detector. An un-
supervised clustering step favoring large clusters will tend
to select features that correspond to the objects of interest
rather than the background. Appropriate feature detectors
may be trained using these clusters. This method has been
described in detail in [11] and will not be discussed here.

In order to learn an object class model from a set of train-
ing images, we need to decide on a small subset of the parts
selected by the feature selection method and we then need
to learn the parameters of the statistical model. We solve
both problems by iteratively trying out promising subsets
of parts. During each iteration, the model parameters are
estimated usingexpectation maximization(EM). At the end
of each iteration, the detection performance of the model is
evaluated using a validation data set. Based on the perfor-
mance, a part in the model might be exchanged against a
more promising one.

The best performing model generated in such fashion is
in the end selected as ‘the model’.

Outline of the Paper

In Section 3 we review the theory underlying our prob-
abilistic object model before we introduce the extension to
mixture models. In Section 4 experimental results are pro-
vided for three datasets: cars, leaves and human heads. Ex-
plicit update rules for mixture model learning are given in
the appendix.

3 Mixtures of Probabilistic Object Models
In this section, we first give a brief description of our ba-

sic object model before introducing the extension to mixture
models. We then provide detailed definitions of the differ-
ent model components.

3.1 Basic Generative Model

We model objects as collections of rigid parts [3]. Dur-
ing recognition, each part type is detected by a correspond-
ing detector. After the part detection stage, an entire im-
age is thus reduced to a collection of parts as well. Some
of those parts might correspond to an instance of the tar-
get object class (theforeground), while others stem from
background clutter or are simply false detections (theback-
ground). Throughout this paper, the only information asso-
ciated with an object part is its position in the image and its
identity or parttype. We assume that there areT different
types of parts. The positions of all parts extracted from one



image are collected in a “matrix,”Xo = 0BBB� x11x12; : : : ; x1N1x21x22; : : : ; x2N2
...xT1xT2; : : : ; xTNT ;

where the superscript ‘o’ indicates that these positions are
observeablein an image, as opposed to being unobserveable
or missing, which will be denoted by ‘m.’ Thus, thetth row
contains the locations of detections of part typet, where
every entry,xij , is a two-dimensional vector. If we now
assume that an object is composed ofF different parts,1

we also need to indicate which parts inXo correspond to
the foreground (the object of interest). For this we use the
vectorh, a set of indices, withhi = j; j > 0, indicating
that pointxij is a foreground point. If an object part is not
contained inXo, because it is occluded or otherwise un-
detected, the corresponding entry inh will be zero. When
presented with an unseen image, we do not know which
parts correspond to the foregound. Therefore,h is not ob-
serveable and we will treat it ashiddenor missingdata. We
callh ahypothesis, since it expresses which parts ofXo are
hypothesized to belong to the foreground object. It is also
convenient to represent the positions of any unobserved ob-
ject parts in a separate vectorxm which is, of course, hidden
as well. We can then define a generative probabilistic model
through the joint probability densityp(Xo;xm;h): (1)

Before we give a detailed definition of this density, we ex-
plain how we construct mixtures based on this model.

3.2 Mixture Model
We assume that a mixture model consists of
 different

components. Each component is a complete model of the
type introduced in the previous section. Our learning and
detection algorithms are set up such that, during recogni-
tion, these mixture components will “compete” for the ex-
planation of an input image. Thus, an image containing
an instance of an object class can only be generated or ex-
plained by a single mixture component. We follow, in this
respect, the spirit of the “mixture of experts” framework in-
troduced in [7]. However, we do not use a true mixture of
experts model, in which a separategating networkis typi-
cally used to divide the input space into regions of respon-
sibility for each expert.

One can also imagine an approach under which model
components “collaborate.” Each component could then ex-
plain only a subset of the object parts in the entire image and
several experts need to be “active” for a given image. For
a more detailed discussion of competitive vs. collaborative
learning see [8].

1To simplify notation, we only consider the case whereF = T . The
extension to the general case (F � T ) is straightforward.

We can write our complete model asp(Xo;xm;h) = 
X!=1 p(Xo;xm;hj!)p(!):
The conditional densityp(Xo;xm;hj!) represents compo-
nent model!. Every component model is based on its own
set of parameters, explaining how the parts inXo can be
arranged spatially in an image. However, not every compo-
nent needs to make use of all part types in order to model
the foreground. Hence, under certain component models,
part candidates of certain types can only be accounted for
as background clutter.

The probabilitiesp(!) express our a priori expectation
of explaining the data with component model!.
3.2.1 Model Details

In order to provide a detailed parametrization of (1), we
introduce two auxiliary variables,b andn. The binary vec-
tor b encodes information about which features have been
detected and which have been missed or occluded. Hence,bf = 1 if hf > 0 andbf = 0 otherwise. The variablen
is also a vector, wherent shall denote the number ofback-
ground candidates included in thetth row of Xo. Since
both variables are completely determined byh and the size
of Xo, we havep(Xo;xm;h) = p(Xo;xm;h;n;b). We
can now decompose in the following wayp(Xo;xm;h;n;b; !) = p(Xo;xmjh;n; !)�p(hjn;b; !) p(n) p(bj!) p(!): (2)

The probability density over the number of background
detections can be modeled by a Poisson distribution,p(n) = TYt=1 1nt! (Mt)nte�Mt ;
whereMt is the average number of background detections
of typet per image. Note that the background statistics are
assumed independent of the model component!.

Depending on the number of features,F , we can model
the probabilityp(bj!) either as an explicit table (of length2F ) of joint probabilities, or, ifF is large, asF independent
probabilities, governing the presence of an individual model
feature.

It is important to realize that the probabilityp(bj!) for
a vectorb which is not consistent with model! (e.g. it
hypothesizes a feature type to be detected which is not used
for the foreground in this component model) is defined to
be zero.

The densityp(hjn;b; !) is modeled by,p(hjn;b; !) = ( 1QFf=1 Nbff h 2 H(b;n; !)0 otherh
whereH(b;n; !) denotes the set of all hypotheses consis-
tent with b, n and !, andNf denotes the total number



of detections of the type of featuref . This expresses the
fact that all consistent hypotheses, the number of which isQFf=1N bff , are equally likely in the absence of information
on the feature locations.

Finally, we usep(Xo;xmjh;n; !) = pfg(xo;xmj!) pbg(xbg);
where we defined[xo xm℄ as the coordinates of all fore-
ground detections (observed and missing) andxbg as the
coordinates of the background detections. In our experi-
ments,pfg(xo;xmj!) is modeled as a joint Gaussian with
mean�! and covariance�!. The positions of the back-
ground detections are modeled by a uniform density,pbg(xbg) = TYt=1 1Ant ;
whereA is the total image area.
3.3 Classification

Throughout the experiments presented here, our objec-
tive is to classify images into the classes “object present”
(classC1) and “object absent” (classC0). Given the ob-
served data,Xo, the optimal decision—minimizing the ex-
pected total classification error—is made by choosing the
class with maximum a posteriori probability (MAP ap-
proach, see e.g. [5]). It is therefore convenient to consider
the following ratio,p(C1jXo)p(C0jXo) / Ph;! p(Xo;h; !jC1)P! p(Xo;h0; !jC0) ; (3)

whereh0 denotes thenull hypothesiswhich explains all fea-
tures as background noise. The sum in the numerator in-
cludes all hypotheses, also the null hypothesis, since the ob-
ject could be present but remain undetected by any feature
detector. In the denominator, the only consistent hypothesis
to explain “object absent” is the null hypothesis.

Although we are here concerned with classification only,
our framework is by no means restricted to this problem.
For instance, object localization is possible by identifying
those foreground features in an image, which have the high-
est probability of corresponding to an occurrence of the tar-
get object.
3.4 Model Learning

A detailed description of our learning method can be
found in [11] for the case of single-component models. We
do not have space to reproduce the method here. However,
explicit update rules of our learning algorithm for the case
of mixture models have been included in the appendix.

4 Experiments
We chose to validate our method under the classification

problem defined in Section 3.3, using three different data
sets: images of rear and side views of cars, images of hu-
man heads, taken over a range of viewing directions from
frontal to profile, and images of a sample of leaves from
three different species of trees.

Since the objects to be learned were in a different, un-
known location in every training image, we employed a
translation invariant extension of our method (see [2] for
a discussion on invariance to planar transformations). We
tried, however, to assert that the objects had the same size
in all images, since we have not yet implemented scale in-
variant learning.

4.1 Training and Test Images
Human Heads: In order to produce a large set of im-
ages with different but known head orientations, a sufficient
number of subjects, as well as different, cluttered back-
grounds, we resorted to a synthetic blending of head im-
ages with background scenes. Subjects were photographed
in front of a blue background, facing7 different viewing
directions (0Æ(frontal); 15Æ; : : : ; 90Æ(pro�le)). The back-
ground was then subtracted from the images (which were
converted to grayscale) and replaced with entirely white or
black regions to produce training images, as well as with
random scenes to produce test images (see Fig. 2).2 Similar
scenes, without superimposed heads, were used as negative
examples. We used10 subjects for training and10 different
subjects for testing. Four pictures were taken of each sub-
ject at every viewing direction. Subjects were asked to keep
a straight face and head orientation for the first two images.
For the other two they were allowed to tilt their head, rotate
it within the plane of view and perform facial expressions
of their choice. The resolution of the training images was
such that the distance from top of the head to chin spanned
about80 pixels.

The set of background scenes contained350 pictures of
landscapes, outdoor scenes of buildings, as well as indoor
scenes of office and laboratory environments. This set was
divided into two sets of175 pictures each for training and
testing.

Leaves: We used completely unlabeled and unsegmented
images throughout the leaf (and car) experiments. We col-
lected six leaves from each of three different species of trees
and photographed each leaf10 times in front of an arbitrary
background, producing180 images (see Fig. 1 bottom). An-
other150 images from the same indoor laboratory environ-
ment were taken as negative examples. As in the other ex-
periments, both sets were divided into an independent train-
ing and test set.

Cars: We took300 images (150 rear views and150 side
views) on public streets and parking lots showing cars in
front of a cluttered background (Fig. 1 bottom). We also
took 200 images of background scenes from the same en-
vironment. We photographed vehicles of different sizes,
colors and types, such as sedans, sport utility vehicles, and
pick-up trucks.

2Although we have demonstrated that our method can learn models of
human heads from entirely unlabeled cluttered scenes, we made use of this
segmentation step in order to speed up the training process.Eliminating
the background helped by reducing the number of features to be tried and
by speeding up the convergence of the EM stage due to the absence of
background detections.



Figure 2. Examples from the human head database. Segmented
heads are superimposed on black and white backgrounds for train-
ing (top), and on random background scenes for testing (center).
For half of the images, subjects were allowed to make facial ex-
pressions and to tilt or rotate their head around the camera axis. On
the bottom we show random background scenes used as negative
test examples.

The car and leaf images were high-pass filtered in order
to promote invariance with respect to different colors of cars
and different lighting conditions. All images were taken
with a digital camera; they were converted to a grayscale
representation and downsampled to a resolution of240 �160 pixels. No images were discarded by hand prior to the
experiments.

The EM model learning was carried out on the positive
training images. In order to optimize for the model configu-
ration, the classification performance of the model was eval-
uated after each pass of EM, using the positive and negative
training images. No individual car/head/leave was present
in the testandtraining set at the same time. The final model
was tested on the previously unseen target and background
images.

4.2 Automatically Selected Parts
Parts were automatically selected according to the proce-

dure described in [11]. The Förstner interest operator was
applied to the positive training images. We then extracted
patches of size11 � 11 around the points of interest and
clustered those using vector quantization. A different setof
patterns was produced for each object class (Fig. 3).

Figure 3. A sample of the patterns obtained from our feature
selection method (based on k-means clustering) is shown forcars
(left), heads (center) and leaves (right). The leaf and car images
were high-pass filtered before feature selection. The totalnum-
ber of patterns selected was175 for heads (across a90Æ range of
viewing directions),89 for cars (across two orthogonal viewing di-
rections) and81 for leaves.

4.3 Results
Classification Performance

To assess classification performance, we learned models
with two mixture components of three features each.

We found the EM algorithm to converge in about100
iterations. One iteration took about200ms using a Matlab
implementation with subroutines written in ‘C’. The entire
training process took several hours on a PC with450MHz
Pentium II processor.

Rather than classifying every image by applying a fixed
decision threshold according to Equation 3, we computed
receiver operating characteristics (ROCs) based on the ratio
of posterior probabilities. In order to reduce sensitivityto
noise due to the limited number of training images, we used
the area under the ROC curve as a measure of the classi-
fication performance driving the optimization of the model
configuration. In Figure 5, we report total classification er-
rors which are computed by choosing a decision threshold
such that the same error rate on foreground and background
images is obtained. The differences between training and
test errors in the Cars and Leaves experiments suggest that
we have experienced a certain degree ofoverfitting. The
asymptotical classification error for an infinitely large train-
ing set lies somewhere between our observed training and
test error.

One might also be surprised by the limited improvement
of the mixture models over the single component models.
The reason for this is the remarkable performance of sin-
gle component models which, e.g., in the case of heads are
often able to work realiably over a large range of viewing
directions (see also Fig. 4).

Examples of misclassifications are shown in Fig. 7.
Tuning of Mixture Components

For this experiment, we learned models with two (cars),
three (leaves), and four (heads) components of three fea-
tures each, exhausting the entire set of available data. We
then investigated the tuning properties of the individual
component models by assigning every training image to that
particular component,!k, for which the “responsibility,”p(!kjXo), was maximal. If no component had a respon-
sibility of more than80%, we assigned the corresponding
image to an “undecided” category. We were able to observe
clear tuning characterstics for all three data sets. In the case
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Figure 4. Analysis of a four-component mixture model with
three features per component. This model was trained on theen-
tire set of available sata. We show the three parts selected for each
component (left) by our training algorithm. Ellipses indicating a
three-standard deviation distance from the mean part positions ac-
cording to the Gaussian pdf governing the foreground part positions
are shown (center). They have been superimposed on an arbitrary
image for which the corresponding component had a high “respon-
sibility.” Since our models are translation invariant, themodels
have been aligned with the image by hand for illustrative purposes.
On the right we show a second arbitrarily selected image, also with
a high responsibility of the corresponding component. Detected
candidate part locations are shownonly for the three part types of
the respective component (Æ = ‘A’, 2 = ‘B’, 3 = ‘C’). Note that the
model components are able to represent the heads over a fairly large
range of viewing directions—about45Æ in this case—mainly due
to the stability of the chosen features. This effect was evenmore
pronounced when we trained models with only two components
over a90Æ viewing range. In this case, single components were
often able to detect a head over the entire range. Hence, the dataset
could be considered not difficult enough for the mixture models.

Cars Heads Leaves
# comp. 1 2 1 2 4? 1 2 3?
train 17% 12% 14% 13% 5% 8% 8% 6%
test 18% 16% 14% 13% n/a 16% 16% n/a
ZFA-DR 46% 54% 57% 61% n/a 59% 60% n/aFigure 5. Test and training performance for the detection exper-

iments. We show the total misclassification error, obtainedat the
decision treshold where an equal number of positive and negative
images is misclassified. We also report the detection rate atzero
false alarms (ZFA-DR). This performance is important for applica-
tions such as digital library searches.?Models with three (leaves)
and four (heads) components were trained onall available data for
the tuning experiments.

of leaves, only a model with three components showed tun-
ing characteristics, but not with two. In the head experi-
ment we only observed tuning for models with at least four
components. Figure 6 shows histograms illustrating these
findings. In both cases, each model component is between
two and four times as likely to detect a particular view or
sub-class than any other.
Separately Trained Components

In another experiment, we trained single component
models separately on labeled side and back views of cars.
We repeated this experiments10 times, to avoid local ex-
trema and obtained an average performance of82% correct
for back views and86% correct for side views. We then
merged those models into two-component models, choos-
ing p(!) = 0:5 for both components. The performance of
the resulting models was only76% correct on average and,
therefore, significantly worse than those of two-component
models trained on unlabeled data with our algorithm for
mixture model learning. Hence, it appears that training
componentssimultaneouslyis vital to exploit the benefits
of our mixture models.

5 Discussion and Future Work
We have presented ideas for learning mixture models of

objects from inhomogeneous training images in an unsu-
pervised setting. A set of unsegmented and unlabeled im-
ages (in the case of leaves and cars) containing examples
of objects amongst clutter is supplied; our algorithm auto-
matically selects distinctive features of the object class, and
learns the joint probability density function encoding the
object’s appearance. This allows the automatic construc-
tion of an efficient object detector which is robust to clutter
and occlusion.

We have demonstrated that our model learning algo-
rithm works successfully on three different data sets: hu-
man heads viewed over a90Æ range of viewing directions,
cars seen from the rear and the side, and images of three
different species of leaves. In the case of heads, discrimina-
tion of images containing the desired object vs. background
images approaches90% correct with simple models com-
posed of 2 components with 3 features each. Performance
on cars is84% correct and on leaves we obtained85% cor-
rectly classified test images. The detection rate at zero false
alarms was consistently above 50%–and often significantly
higher–which is promising for content-based searching of
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Figure 6. Histograms showing tuning properties of the mixture
models models. For every component model the number of images
for which it is “responsible” is plotted. The right-most group of
bars show “undecided” images, where no model reached a valueof
more than80% probability. The number of components was two
(cars), three (leaves) and four (heads). Head models were found to
be partially tuned to head orientation but also to small remaining
differences in head sizes in our data sets.

large image databases. We demonstrated that our method
is capable of identifying different sub-classes amongst the
unlabeled training images. These sub-classes are due to dif-
ferent viewpoints (cars, heads) or genuinely different sub-
categories (leaves).

While training is computationally expensive, requiring
several hours of computer time on training sets composed
of approximately 100 images, detection is efficient, requir-
ing less than half a second in our hybrid ‘C’-Matlab im-
plementation. This suggests that training should be seen as
an off-line process, while detection may be implemented in
real-time.

Many aspects of our implementation are suboptimal and
susceptible of improvement. To list a few: we imple-
mented the part detectors using normalized correlation.
More sophisticated detection algorithms, involving mul-
tiscale image processing, multiorientation-multiresolution
filters, neural network etc. should be considered and tested.
Moreover, in our current implementation only part of the
information supplied by the detectors, i.e. the candidate
feature’s location, is used; the scale and orientation of the
image patch, parameters describing the appearance of the
patch, as well as its likelihood, should be incorporated. Our
interest operator as well as the unsupervised clustering of
the features have not been optimized in any respect; the

Figure 7. Examples of misclassified images from the three test
sets.

choice of the algorithms deserves further scrutiny as well.
An important aspect where our implementation falls short
of generality is invariance: the models we learned and tested
are translation invariant, but not rotation, scale or affine
invariant. There is no conceptual limit to this generaliza-
tion, although the computational cost grows significantly.
We also need to explore a principled way of deciding on
the number of mixture components. This could be done
by monitoring the generalization error as a function of the
number of components. Finally, the possibility to trade-off
the number of components against the number of parts in
every component should be investigated.
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A M-step and E-step
For details on the derivation of our basic learning algo-

rithm the reader is refered to [11], where we derive the up-
date rules for a single component model.

We employ the EM algorithm to optimize the likelihood
of the observed data,L(Xoj�) = IXi=1 log Xhi;!i Z p(Xoi ;xmi ;hi; !ij�) dxmi ;
with respect to the model parameters,� =f�!; �!; p(bj!); M; p(!)g. Since this is difficult
to achieve analytically, EM iteratively maximizes a
sequence of cost functions,Q(~�j�) = IXi=1 E[log p(Xoi ;xmi ;hi; !ij~�)℄:
Taking the derivative ofQ(~�j�) with respect to the param-
eters and equating to zero produces the following update
rules, ~�! = PIi=1 p(!jXoi )E! [zi℄PIi=1 p(!jXoi ) ;~�! = PIi=1 p(!jXoi )E! [zizTi ℄PIi=1 p(!jXoi ) � ~�! ~�T! ;~p(�bj!) = PIi=1 p(!jXoi )E! [Æbi;�b℄PIi=1 p(!jXoi ) ;~M = 1N IXi=1X! p(!jXoi )E![ni℄;~p(!) = 1N IXi=1 p(!jXoi );
where zT = [xo xm℄ and E![:℄ denotes taking
the expectation with respect to the posterior densityp(hi;xmi jXoi ; !; �). These update rules constitute the M-
step.

The E-step amounts to the calulation of the sufficient
statisticsE! [z℄; E![zz℄; E![Æb;�b℄; E! [n℄ and the poste-
rior density p(!jXoi ) = p(Xoi j!) p(!)P! p(Xoi j!) p(!) ;
with p(Xoi j!) =Xhi Z p(hi;xmi ; Xoi j!; �) dxmi :

Explicitely,p(Xoi j!) is calculated as follows. Choose a hy-
pothesis consistent with the observed data. Integrate out
the missing data by eliminating the appropriate dimensions
from the Gaussian foreground pdf. Calculateb(h) andn(h) and insert them into the joint density. Finally, sum
over all possible hypotheses. The expectations of the statis-
tics are calculated in a similar fashion.E![Æb;�b℄ is calcu-
lated by summing only over those hypotheses consistent
with �b in the numerator and dividing byp(Xoi j!). Sim-
ilarly, E! [n℄ is calculated by averagingn(h) over all hy-
potheses. ForE![z℄ = (xo E![xm℄) we needZ xm G(zj�! ;�!) dxm = �m! +�mo! �oo! �1(xo � �o!);
where we defined�! = (�o! �m! ) and a similar decompo-
sition for�!. For the calculation ofE! [zzT ℄ we need the
following resultE[xmxmT ℄ = �mm! ��mo! �oo! �1�mo! T+E![xm℄E![xm℄T :
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